
M I G R A T I O N

Migrating Applications From Proprietary/Legacy Platforms

Preface

With frequent advances in computing technology, and
the increased risk of proprietary/legacy operating
platforms being phased out by vendors, the focus on
renewal, modification, and updating of computer
systems is increasing.

Application migration is now a major issue in established
IT departments everywhere. Organizations that have
spent years developing applications for particular
hardware and operating system environments now see
these environments as inappropriate and financially
impossible to maintain.

However, these organizations have significant
investments in legacy applications critical to their
business work flows. Migration of critical applications to
another platform (typically UNIX based), offers a way to
maintain that investment while gaining additional
benefits.

Costs savings are typically realized through reduced
capital expenditures and ongoing saving in operating
costs provided by the newest hardware. Further cost
savings are realized by the standardization in hardware,
resulting in highly competitive pricing. Finally, enhanced
capabilities are possible because of the extensive selection,
and wide availability, of modern software development
tools.

ISVs are taking advantage of this situation by
consolidating the platforms for which they provide
support, and why not? To support an application on one
platform instead of many reduces costs, and permits the
entire company to focus on that one platform, which
ultimately benefits the users of those applications.

The introduction of new technologies such as the
Internet, e-commerce, development environments,
operating systems, networked data storage, and hardware
and communications systems have become the leading
edge and focus of the industry.

Indeed, these new technologies have changed the
concept of information and its usage in worldwide
business. Keeping abreast of new developments and
utilizing them to the full are essential requirements for
maintaining a competitive edge in today’s high-power
business environment.

While the need for renewal of business legacy systems is
clear, the fact remains that, for the most part, they
perform satisfactorily and continue to meet the
functional requirements for which they were originally
developed. The main reason for this is that the functional
requirements, which embody the rules and methods of
business transactions for the domain of interest, have not
changed appreciably.

Consequently, it is a unique attribute of business legacy
systems that they contain a vast amount of valuable
business knowledge and procedures that should and will
be retained in the new systems that will replace them.
What is never taken into consideration is the considerable
investment in time, effort and money that has gone into
making these systems as functional and robust as they are
today – the opportunity to retain some of that
investment should not be overlooked.

To that end, there are a number of options to be
considered; Replace, Re-host, Renovate, Rewrite, Retire,
Retain

This paper is not intended to be a definitive guide to
application migration, more an insight into the planning
required, and some of the many options available to you
– if you have multiple applications and/or multiple
systems, then it may be that a combination of some of
these options is necessary.

Some of the options you may be aware of, some you
won’t, some you may have never even considered; but
they provide a helpful introduction, and will assist help
you in preparing a roadmap for moving forward.

M I G R A T I O N

M i g r a t i n g A p p l i c a t i o n s F r o m P r o p r i e t a r y / L e g a c y P l a t f o r m s 2

What is Migration?

Migrating, Re-hosting, Re-platforming or Porting?
Moving an application from one version of UNIX to
another, can generally be referred to as Porting –
fundamentally applications written for one version of
UNIX could be deemed to be portable, and can be
ported to another version of UNIX with a minimum
amount of re-working because of the availability of
standard programming interfaces which increase the
portability of such applications. In many instances, it is
the availability of third-party products that represent the
greatest challenge when moving from one UNIX to
another.

We generally use the term Migration to describe the re-
hosting of an application from a proprietary/legacy/
complex platform to a new one (not limited to, but
typically UNIX based) with minimal changes to the
application business logic and no degradation to the
functionality or stability of the application. By applying
minimal change, the schedule, cost and risks associated
with major changes to the application are mitigated, and
the impact on day-to-day operations is minimized.

The majority of legacy applications are written in a “non-
proprietary” high-level language such as FORTRAN,
COBOL, Pascal, or C; others combine the use of macro
assembler code and real-time languages such as Ada.
Intuitively, migrating these applications to another
platform is expected to be a “cake walk”. Project plans are
based on doing a re-compile, linking in some emulation
software, and performing some quick tests. In a world
that totally complied to standards this would be true, but
real world situations make this simplistic approach a
recipe for failure. Such applications are not considered
portable, and will invariably make use of functionality
that adds to the complexity of the application such as the
use of operating system extensions, special capabilities or
layered products that may not be present on the new
platform. Use of such extensions has to be replicated,
removed or replaced with comparable functions in the
new operating environment. In addition to language
differences, data conversion may also be required and
adaptation to new system procedures for running an
application.

M I G R A T I O N

M i g r a t i n g A p p l i c a t i o n s F r o m P r o p r i e t a r y / L e g a c y P l a t f o r m s 3

Why Migrate?
The choice to migrate begins with the premise that you
recognize “value” in your current application(s) and due
to several factors, would prefer them to be made available
on a newer hardware and/or operating system
environment.

Ascertaining what is influencing the decision to migrate
plays an important part in determining your planning
and future strategy. Migrating an existing application in
part or whole, is a viable alternative to rewriting or
purchasing an off-the-shelf product. Clearly, in some
cases, rewriting or re-engineering is not feasible because of
schedule, cost and risk. Similarly, purchasing a
replacement product may not provide all the required
functionality (the legacy application may even be so
specialized that there is no replacement product
available).

Platform Related
• End of life of operating system and/or hardware is

determining the move

• You want/need to move from a legacy/proprietary
platform to an industry-standard platform

• You wish to reduce your IT cost of ownership by
consolidating the number of platforms in your
organization

• Technical problems with your current platform
(software and/or hardware) represent a risk to your
business, so a platform change is preferred

Application Related
• You like the applications very much and wish to retain

them regardless of operating platform

• You wish to retain the investment made in your
applications

• Customizing off-the-shelf packaged software to meet
your needs can prove risky and costly

• Your existing applications still provide unique
functionality not found in off-the-shelf packaged
applications (unless heavily customized, in which case
see the previous point)

• The cost of writing a new application is often
prohibitively expensive

• Availability of new business applications is reducing as
vendors focus on newer platforms

• Your users are demanding an attractive GUI (Graphical
User Interface) instead of the existing character
terminal-based UI (even though a GUI might be less
efficient in day-to-day use)

Development Related
• Skilled resources in your development and/or operating

environment are becoming scarce, expensive, or both

• Availability of new development tools is reducing as
vendors focus on newer platforms

• You wish to take advantage of new technologies such as
relational databases, client/server and the web

M I G R A T I O N

M i g r a t i n g A p p l i c a t i o n s F r o m P r o p r i e t a r y / L e g a c y P l a t f o r m s 4

What Approach To Take?

There really are only two approaches to application
migration, both have benefits and risks, and so great
consideration should be made as to which approach best
meets the needs of your organization.

Big Bang
• Attempt to migrate everything at once

• Many simultaneous changes being made to several
applications can seriously complicate the development,
testing, and debugging processes

• Greatly increases risk to the potential success of the
project

• Requires a great deal of “down-time” to roll-out, which
makes a roll-back all the more difficult

• Typically increases the time and resources required (and
hence costs)

• Existing staff need to be immediately productive in the
new environment, or supplemented with staff with the
required skills

• Many people adopted this approach when they had no
other choice, and would now recommend avoiding it if
at all possible

• Unless there is no other alternative, we would generally
recommend that this approach is avoided

Phased
• Migrate one or two applications (or application

components) at a time

• Your developers can focus on one set of issues at a time

• Fewer changes are being made simultaneously, which
means that it is easier to identify the cause of problems
if/when they arise

• Simplifies/reduces application testing effort

• Can be deployed in manageable steps which reduces
the impact to your organization

• Shortens overall development schedules by simplifying
each step (and hence reduces costs)

• Existing staff can adopt new skills over a period of time
as the application components are deployed

• Phased stages can be implemented “live” bringing
earlier ROI (Return On Investment), while also phasing
the costs over an extended period of time

M I G R A T I O N

M i g r a t i n g A p p l i c a t i o n s F r o m P r o p r i e t a r y / L e g a c y P l a t f o r m s 5

Where Do You Start?

Many people have never had to undertake a migration
from one platform to another before, so there may not be
a great deal of knowledge internal to your organization as
to what the actual requirements are. It is therefore
important that you understand what is required to help
build a roadmap that dictates the future of your
applications (and possibly your organization’s IT
infrastructure).

Management
Migration of any kind raises a number of concerns
specific to management. They are all solvable and when
addressed they can build team spirit, teach new skills,
and leave a more effective organization.

New skill sets are required of organizations moving from
one platform to another. While the goal of most activities
will be the same as on any operating system, the specific
actions one takes is different. Obvious examples involve
system and network management, accessing the e-mail
system and simple things like using the editor.

One striking effect a migration project has is to highlight
the cultural change the IT staff must go through. For
example, staff may have significantly different ways of
viewing the world that can affect morale and
productivity. For example, it is common to hear staff who
are used to the VMS world refer to UNIX as a “fancy
MS-DOS”.

A migration project that changes critical information
systems requires coordinating many diverse activities,
including such basics as:

• Hardware resources

• Training of the IT staff

• User documentation

• Train the trainers

Other activities such as beta-testing and product release
which may not have been done for years must now also
be addressed.

One item sometimes overlooked in a migration project is
the impact on the existing customers (your users), which
can be a significant issue. Both external and internal
customers must be considered. Your customers are used
to using your software on one platform and now you are
moving to another, the first question in their minds will
be “are you abandoning us?”

M I G R A T I O N

M i g r a t i n g A p p l i c a t i o n s F r o m P r o p r i e t a r y / L e g a c y P l a t f o r m s 6

Choice Of Target Platform
Unless you are in a situation where there is a corporate
standard or preferred vendor for particular platforms,
“Which platform should I select?” is one of the most
common questions that is asked when considering the
move from one platform to another.

Hardware
The fundamental differences in hardware architecture
must be addressed for a successful migration. Again, to
use the VAX VMS example, there are obvious differences
between VAX and RISC-based architectures, such as the
significantly reduced command set and expanded register
counts. But, there are other differences equally important
but typically overlooked. These include floating point
format, parameter passing mechanism, odd byte
addressing, and lastly the fact the VAX is a little-endian
machine.

Unless the applications are particularly complex in
nature, processor/architectural differences are generally
hidden from the “average” programmer, but can have
serious implications in a migration project. For example,
the floating point formats can significantly change results
in applications doing extensive calculations, the
parameter passing mechanism may prove problematical if
using inter-language calls. What is probably the most
significant problem is odd byte addressing (in the best
case it will be limited to performance degradation while
in the worst case can cause total software failure) and
“endianism” of the target hardware chosen.

The Endian Problem
Doesn’t exist in some platforms while for others it will be
the majority of all errors found. Big-endian and little-
endian are terms that describe the order in which a
sequence of bytes are stored in computer memory. Big-
endian is an order in which the “big end” (most
significant value in the sequence) is stored first (at the
lowest storage address). Little-endian is an order in which
the “little end” (least significant value in the sequence) is
stored first. For example, in a big-endian computer, the
two bytes required for the hexadecimal number 4F52
would be stored as 4F52 in storage (if 4F is stored at
storage address 1000, for example, 52 will be at address
1001). In a little-endian system, it would be stored as
524F (52 at address 1000, 4F at 1001).

Endian problems can manifest themselves in a number of
ways, most typically in applications written in languages
such as C and FORTRAN. Whilst the application will
continue to function, results may be somewhat erratic.

M I G R A T I O N

M i g r a t i n g A p p l i c a t i o n s F r o m P r o p r i e t a r y / L e g a c y P l a t f o r m s 7

Operating System
The major problems of introducing another operating
system to an application is found in the usage of low-
level interfaces to the operating system. These interfaces
include file access, references to operating system
intrinsics, and use of layered and third-party products.

Ultimately, deciding what operating system on which to
run your application(s) will depend upon the size of
system required, which one your applications(s) require
to run on, and the price that you are prepared to pay.

Most vendors offer an implementation of the industries
most popular on their range of systems:

• UNIX – is a robust, commercial-quality operating
system that runs on a wide range of RISC or Intel based
systems, from workstations to mainframes - IBM AIX®,
Compaq Tru64™ UNIX®, Hewlett Packard HP-UX,
Santa Cruz OpenServer/UnixWare and Sun Solaris are
those most commonly deployed.

• Windows® - doesn’t really need any introduction;
limited to available on Intel processor based systems.
The vast majority of Windows systems that are
deployed are desktop systems, with some larger
distributed systems making their way in to enterprise
data-centers. The introduction of the Intel 64-bit
processor family will most likely bring with it
deployment in larger enterprises. If a vendor offers an
Intel based system, then it’s pretty much a 100%
certainty that it will run Windows.

• Linux - an open source, UNIX-like operating system
that has been popular within the developer community
for some years, and is now finding commercial support
by way of major hardware vendors such as Compaq,
HP, IBM and Sun. The effect that this has had is for
Linux to become more widely accepted as a viable
operating system on which to “Bet Your Business”.
Linux is available on most of the processor architectures
offered by vendors today, including all of IBM’s
platform offerings.

• Others - most vendors also offer operating systems other
than the more “popular” ones described, and it may be
that one of these is a more appropriate platform on
which to deploy your new/migrated applications -
IBM’s OS/400 and OS/390 and Compaq OpenVMS
and Non Stop Kernel are prime examples. One of the
biggest advantages of these operating systems is that
they tend to be much more secure that Windows/
Linux/UNIX.

Development Environment
The key tool enabling software migration is the compiler.
Typical migration scenarios depend on compilers
providing support for the majority of the application
language. But a compiler is like any other piece of
software - it has the potential to have errors or
inconsistencies. These can occur both on the new
platform and, surprisingly, on the current one.

The errors in the host system might have always existed
but because of a combination of different errors the
application has worked correctly.

The unfortunate flip side of using “standard” high-level
languages and reliable emulation software hides some of
the dangers of a migration. These dangers are found with
changing the hardware and operating system, which
forces major differences in the compiler. These three items
together bring out previously hidden errors in the
application. The migration activity itself can generate
errors in any new code introduced.

M I G R A T I O N

M i g r a t i n g A p p l i c a t i o n s F r o m P r o p r i e t a r y / L e g a c y P l a t f o r m s 8

Planning
The most important thing to remember is that if a
migration is planned for, and executed in manageable,
quantifiable steps, success can be ensured.

All of the departments within your organization which
are likely to be impacted by the application migration,
such as management, the application users, and the
various IT functions need to be made aware of what is
happening, and need to be involved in planning the
next steps.

You should inventory your existing environment –
documenting what you currently have helps to establish
the size, complexity and scope, and will save a great deal
of time when dealing with various vendors because
inevitably the same questions always arise.

Risk Assessment
Professional judgment must be used when interpreting
both the quantitative and risk analysis, and how they
contribute to the overall risk of the migration. In general,
the risk elements describe a fundamental set of risks that
all software migrations exhibit, regardless of their size or
application type. The risks in a migration project,
however, must be interpreted in light of a project or
organization’s business environment and specific
circumstances. This interpretation should be based on an
informed knowledge of migration projects in general, the
organization, and the specific migration project being
evaluated. The tables that follow provide a means for
structuring this interpretation, but are not an end in
themselves. If an organization’s risk control of a particular
risk item is adequate, but differs from the norm, the
rationale for the interpretation should be documented. A
documented rationale will help clarify the “why” of
certain practices.

Applying professional judgment leads to the issue of the
“goodness” of the potential migration project. The risk
management process does not place “goodness”
requirements on the migration process, although it does
establish minimal criteria for a “reasonable” process for
many projects. The objective of the analysis is to establish
processes that are used and can act as a foundation for
systematic improvement based on the organization’s
business needs.

Risk management on a migration project involves
managing the five individual components of risk. The
answers to these questions are complex and involve the
analysis of different risk drivers. A migration plan that
successfully addresses these risk components up front will
be a migration project that can be delivered within
budget, and on schedule.

Cost ~ Will it be within budget?
A complete assessment is the first stage of any serious
migration project. By understanding and detailing the
project size and scope, the risk of the project going over
budget is significantly reduced. The key issues of the
assessment stage is a detailed understanding of:

· The existing corporate and computer environment

· How software is developed

· The technical environment the application exists in

· The target environment

The assessment process provides opportunities for the
company to perform a fairly detailed situational analysis
and should result in a clarification of its IT Goals and
direction. No matter what format your assessment takes,
at its completion every work item for the migration
should be accounted for and there must be no unknowns
left that will affect the final project schedule or price.

M I G R A T I O N

M i g r a t i n g A p p l i c a t i o n s F r o m P r o p r i e t a r y / L e g a c y P l a t f o r m s 9

Schedule ~ Will it be done on time?
Planning is the second stage in the project. While the
activities are similar to a development project, the slant is
different. The first major step in the planning process is
to provide a technical architecture for all of the software
identified in the assessment stage - this is not necessarily a
development effort requiring months of planning. Any
items without demonstrated solutions must have small
prototypes developed and verified.

The second step during the planning stage is for the
inclusion of specific risk management activities to control
the risk drivers identified during the assessment stage.

· Risk Avoidance is used at the beginning of a project to
remove the cause of the risk. This may involve
descoping the project or changing some significant
factor involved.

· Risk Control is performed during the migration project
and involves intensive management intervention. It
may include activities such as parallel efforts or frequent
management reviews.

· Risk Assumption would involve going ahead as planned,
accepting that there is the potential of not meeting the
schedule or going over budget

· Risk Transfer involves removing the source of the risk
from the migration project. This could mean hiring
outside consultants, outsourcing parts of the project, or
delaying the high-risk elements of the project.

The results of the Planning stage is a schedule with
achievable, tangible, and measurable milestones. Three
major activities that must be detailed and included in the
schedule include configuration management, automated
build procedures, and testing.

A rapidly moving migration project depends on the
ability to have incremental builds on a daily basis with
automated nightly testing.

Technical ~ Can it be done?
The objective of your migration project is to have
working applications on a new platform. This is where
point solutions conceptualized during the planning stage
are implemented. As the build becomes available, tools
are used and are integrated, specific re-engineering tasks
are performed, and unit tests are performed.

Configuration management and the build mechanisms at
this stage must be carefully watched as they can and will
cause the project to fall behind schedule and be over
budget.

Unit testing of some of your major subsystems should be
performed. The unit tests do not need to be complete,
but they must ensure that basic functionality is available.

M I G R A T I O N

M i g r a t i n g A p p l i c a t i o n s F r o m P r o p r i e t a r y / L e g a c y P l a t f o r m s 1 0

Operational ~ Will it work?
The Validation stage has historically brought the most
long term value to our clients. It can and should begin
when the corporation has committed to the migration
project. The final deliverable of this stage is your
application on a new platform with your users trying it,
working with it, and using it. The goal is A System With
Equivalent Quality!

The major advantage a migration project has is also its
potentially largest problem! The fact that “The system is
already working” provides some very practical
opportunities. Specifically a complete test suite can be
available before the first line of code is migrated to the
new system.

The process we recommend is:

· Develop a significant number of automated and
repeatable test cases on the existing working system

· Execute these test cases on the migrated system

· Automatically compare the results removing changes
caused by time and dates

· Repeat the comparison process until an acceptable level
has been reached

The test methods we develop are based on the functional
capability of the application. These cases are developed
using the same documentation that is given to the users.
The test cases need not be complicated but should be as
comprehensive as possible. A rule of thumb is to have
every user function executed and every type of data
record read, written, updated, and deleted.

We cannot emphasize enough the effectiveness of nightly
automated testing. The results can be analyzed each
morning and changes can be introduced and the tests
rerun.

Support ~ Can it be maintained?
The final stage—Productization—is the most difficult to
complete, as the tendency is to continue to make
changes. However, its purpose is clear. The
productization stage converts, for example, a “HP 3000
MPE application running on UNIX” into a true
“solution”. This statement of purpose represents activities
that range from dealing with performance issues to
adding to a complete client/server GUI.

We recommend during the Productization stage that a
performance measurement plan be developed. The
performance plan is based on selecting and measuring a
typical transaction. The transaction may be composed of
a number of individual transactions.

The performance plan provides two significant benefits.
The first is that it enables performance improvements to
be rapidly introduced and the effect measured. The
second benefit is in hardware selection and capacity
planning. Using the results of the performance
measurement plan selecting new hardware configurations
becomes easier and less error prone.

M I G R A T I O N

M i g r a t i n g A p p l i c a t i o n s F r o m P r o p r i e t a r y / L e g a c y P l a t f o r m s 1 1

Testing
One of the most important aspects of any migration is
testing. If you have no means of verifying that the
migrated application works in the same way as it did on
the original platform, then how do you know if the
migration has been successful? One important thing to
remember is that if you choose to change the way in
which your application works when it is migrated to a
new platform, the test plans will need to be altered
accordingly – this is often overlooked during the
planning phase.

If you don’t have any formalized testing procedures,
reviving those old Y2K test plans is a good start. One
important consideration is that any test plans that you do
have will not be designed to exercise subtle problems that
arise out of a platform change such as byte ordering, or
the use of new languages and compilers which have their
own little “nuances”. Testing is even more important
when it comes to ensuring that data that has been
migrated from the original platform has not been
compromised. Application tests should not be used to
verify the integrity of migrated data; specific unit tests
should be employed for each data file.

The definition and creation of a viable test plan is critical
to the success of a migration project. Used during various
stages of the project, test plans serve to validate the
baseline system, assist the developers in performing unit
and system tests, and provide the framework for final
acceptance testing. These test plans also serve as an
“investment” because they can continue to be used and
enhanced throughout the life of the migrated
application.

Specific test plan details vary from project to project,
however we employ the same overall approach with the
same basic requirements for all project test plans.
Generally speaking, the more time spent up front
putting together a detailed test plan, the greater the
chances for success in meeting project deliverables,
schedules and expectations. Like many other similar
exercises however, the law of diminishing returns comes
into play at some point in time.

The danger lies in developing a plan with procedures so
complex or comprehensive that it becomes impractical or
too time-consuming to execute efficiently. The challenge
then, is to define a test plan sufficiently detailed to ensure
application integrity and validity; yet simple enough to
allow efficient and repeatable execution.

It is, of course, important to consider that the time
required to run the tests is dependent upon the speed of
the platform on which the testing is being performed.

Automated software testing can be used to ensure that
migration projects come in on time and within budget, as
they mitigate against the tendency to test too late in the
process. Also, automated software testing reduces the
manual labor required to do thorough and realistic tests.

Software testing within a migration project has some
special characteristics when compared to testing for new
development. Since the specifications for the application
are complete at the outset, a migration project can take
advantage of the opportunity to test early in the process.
In addition, since the application is well understood, test
cases and scripts can be developed even before the
migration begins.

The use of an automated software testing tool is
particularly appropriate since it lowers the cost of
regression testing after each build, which in turn avoids
errors in production.

In addition, automated testing can demonstrate how the
system will perform for the required number of users in
terms of response time and other measurements.
Predicting response time from the user perspective is
critical if a migrated application is going to be accepted
by the user community. Also, performance testing gives
data to the capacity planning effort.

Migration testing has the following characteristics:

· Test cases and scripts can be developed in a known,
stable environment

· User expectations for functionality are known, and tests
to verify functionality can be created early in the
process

· User expectations for system performance, especially as
measured by response time, are known, and can be
quantified.

M I G R A T I O N

M i g r a t i n g A p p l i c a t i o n s F r o m P r o p r i e t a r y / L e g a c y P l a t f o r m s 1 2

Other Considerations
When planning a migration, don’t overlook any other
software components that may also be running on your
systems that are just as essential to the smooth running of
your business as the main application(s). Be sure to
include these in your system inventory so that you can
determine if replacements are required.

Something that is often forgotten is the ability to read
backup media from your old system. Imagine that you
have shutdown your old system and fired up the
replacement in March. Then in September you discover
that there was a serious error made in January, so you

need to pull a file from the backup tape…uh oh…the
backup tape is in a format which can only be read by the
new system. Be sure to plan for this contingency.

Be sure to include sufficient training for your staff in the
period leading up to the start of the migration project,
during and after. One important thing to keep in mind is
the moral of your IT staff — many of them will likely
have worked on your applications and systems for many
years, making them “the experts” — suddenly being
thrust into a whole new world where their years of
knowledge count for little, can be both exciting and
threatening for them.

M I G R A T I O N

M i g r a t i n g A p p l i c a t i o n s F r o m P r o p r i e t a r y / L e g a c y P l a t f o r m s 1 3

What To Do With Your Applications?

Third-Party Applications
If all or some of the applications that you are running are
supplied and supported by a third-party (ISV), then you
need to contact them and discuss their roadmap for the
applications that you are using.

For older systems, it is highly likely that the original
vendors are no longer in existence, or that the
applications have been “absorbed” into the business of
another vendor, who provides only on-going support for
that particular application/version. In such a situation, it
is possible that they offer an upgrade path to new
applications that you could take, or suggest an alternative
application that meets your needs.

In some instances, you may find that they offer an
upgrade path to later versions of your application that
run on other platforms, such as Windows, Linux or
UNIX. If this is acceptable to you, then it is a win-win
situation, and it means that the route to a new platform is
less painful. The only obstacle might be the availability of
data-migration utilities that will take your existing data
files and re-create them in a format acceptable to the new
application.

The situation may also arise where a user is very happy
with the particular application that is being used, and so
does not wish to upgrade to a newer/revised version on a
new platform. In these situations, it may be possible to
come to some agreement with the original supplier and
have them migrate the older version of the application to
a newer platform for you; or if they are prepared to
provide you with rights to use the source code, have
someone migrate it for you. Alternatively you could
suggest that the ISV has someone migrate the application
on your behalf.

Ultimately, it is important that your original supplier is
the first point of contact, so that you can ascertain the
options open to you from them, and whether or not it is
appropriate to your organization. Some of the situations
described here could prove to be costly or have a high-
level of risk attached to them.

In-house Developed Applications
If you are running applications that you have developed
in-house, if no third-party supports your applications, or
if you want to take this opportunity to implement a new
solution that can better support your business, you have
a number of options open to you.

Replace
It is likely that when your in-house applications were
developed some years ago, it was because there was no
off-the-shelf applications available to meet your business
needs, which may not be the case now. It may now be an
opportune time to take a look in the marketplace and see
if there is a ready-made solution available. Replacing your
homegrown applications with a ready-made one is by far
the quickest way to embrace new technologies, and get
the new features and functions that your business
demands.

As when performing a rewrite, one of the biggest barriers
when replacing a homegrown application with one off-
the-shelf, is understanding what the current one actually
does. If the application has not been meticulously
documented, then the first task is to document the
business functionality of the existing application(s). This
then becomes the starting point for your gap analysis to
determine the replacement. If the new application doesn’t
do what the current one does as a minimum, then it will
not be acceptable to the user community, and represents
a risk to your business.

There is an alternative to purchasing a new application,
which may not have been considered - Application
Service Provider (ASP). An ASP offers you the ability to
use an application remotely, without the need to
purchase new hardware, new applications, or incurring
the cost of IT resources to run it. If cost reduction is a
priority, an ASP offering has a lot going for it.

M I G R A T I O N

M i g r a t i n g A p p l i c a t i o n s F r o m P r o p r i e t a r y / L e g a c y P l a t f o r m s 1 4

Re-host
Moving your application from one operating platform to
another can be as simple as a re-compile, or the most
complex task ever envisaged. If your application has been
written using a 4GL, then there is a possibility that this
4GL will also be available on multiple platforms, thereby
simplifying the effort.

It may be the case that some or all of the development
languages that you have used are not available on newer
platforms, and so a change of development language will
be required. Alternatively you may wish to take this

opportunity to move away from a language that is so old
that they stopped teaching it 20 years ago, and so
finding programmers who can still remember how to use
it becomes an increasingly difficult task!

When you are migrating, you need to decide whether
you want to re-host on a one-for-one basis, or whether
you want to introduce changes to any of the
components, such as the user interface or database
technology.

M I G R A T I O N

M i g r a t i n g A p p l i c a t i o n s F r o m P r o p r i e t a r y / L e g a c y P l a t f o r m s 1 5

Using Tools
It is possible to migrate your applications to a new
platform by using software tools that will allow your
application to function in the new environment. These
tools come in a number of guises - those that preserve the
look and feel of the original platform and those that
move you to the new platform, and expose you to the
look and feel of the new environment.

A well-implemented migration methodology allows the
user to maintain a single set of source code for the
application while it runs on both the original and new
platforms. This is particularly helpful for ISVs who must
continue to maintain the application for both
environments. However, it can be useful to an end-user
who has multiple computers and/or multiple sites. It
means that all sites are running the same version of the
application during transition to the new platform.

It should not be assumed that these tools will provide
you with a “silver bullet” – from our own experience, we
have yet to find any tools which will guarantee 100%
success “out of the box” – we would advise anyone
against the thought that you can shutdown your own
system on Friday night, migrate over the weekend, and
start using your applications on the new platform come
Monday morning – this is just so fraught with risk!!

· Software based hardware emulators which permit
programs from one machine architecture to run on
another by creating a “virtual” machine on the new
platform. A typical example of this is the CHARON-
VAX family of products which emulate a complete VAX
hardware system on an Intel based machine.

· Binary translators which convert a binary executable
(that is, compiled) program for one operating platform
into a binary executable program optimized for another.
An example of this is DECmigrate, which converts a
binary executable program for OpenVMS VAX or
ULTRIX RISC on MIPS into a binary executable
program optimized for OpenVMS Alpha or Compaq’s
Tru64 UNIX.

· Language translators which can take one programming
language and turn it into another, such as our VX/
BASIC which takes Compaq OpenVMS DEC BASIC
code and turns it into C (because there is no DEC
BASIC compiler available outside of OpenVMS).

· Language parsers that take one language dialect and
convert it into another. An example of this is our
XFORM/COBOL that takes HP 3000 MPE COBOL
and converts it into a dialect suitable for compilation by
another COBOL compiler such as that from Micro
Focus or Acucorp.

· Environmental subsystems which provide functional
equivalences for operating system specific functionality
such as VMS system services and MPE intrinsics.
Generally these tools take the form of linkable libraries
which embody the same API structures as those from
the original platform, thereby minimizing changes
required to the application source code.

· Data extraction, migration and conversion tools which
help preserve your most valuable asset. There are many
reasons why the data on your existing platform may not
be portable due to floating point format, endianess or
proprietary file formats. Having the ability to export
your data to a new platform and file system without
compromise is very important.

· Command shells that replicate the functionality of the
command shell from your original host. For many users,
when moving from one operating system to another,
having a familiar command shell can make them
instantly productive in a totally alien environment.
Examples of this is our VX/DCL which replicates the
OpenVMS DCL command interface, and XFORM/CI
which replicates the MPE command interpreter.

· Tools that replicate batch and print spooling
functionality can be very useful if your applications
depend very heavily on these functions either via
command files or through direct application
interaction.

M I G R A T I O N

M i g r a t i n g A p p l i c a t i o n s F r o m P r o p r i e t a r y / L e g a c y P l a t f o r m s 1 6

Tools, Native, Hybrid or Phased?
There are at least two major classes of users for migration
tools. The first category wants to perform a complete
migration; the second class wants the ability to migrate on
demand. Complete migration users are interested in
converting to the new platform and discontinuing use of
the original platform. Migrate on demand users want to be
able to use one source code pool on either the original or
the new platform environment. In the first case, once the
migration is completed, the tools are no longer needed. In
the second case, they may continue to be used for many
years.

Complete migration users come in at least two categories;
those who are satisfied with compatibility of the original
run-time environment on the new platform and those
who want to run in native-mode in the new environment.
The quickest, easiest and least expensive method of
porting involves the use of a simulated environment that
is compatible with the original operating system, hence
the name compatibility mode. In most cases, this will
provide acceptable performance for the life of the system.
Some users may wish to convert the software so that it
can be optimized to run in the new environment. This
native-mode port allows the application to run free of
proprietary features from the original platform.

Tools based porting works best for all of the above
categories and sub-categories of users. The most
important feature of tools-based porting is that the
automated conversion can be performed at any time and
it can be repeated at anytime. Even if the user wants to
perform a complete migration, there is a period of parallel
operation. What if during this parallel operation or even
after the system is in production, it is determined that
there is a major pervasive defect in the software? The
solution is to fix the toolset to remove the defect and
then re-run the migration. In other words, it’s easy and
inexpensive to start over! If, on the other hand, the
migration were to be done manually, such a change could
be frustrating, time-consuming and very expensive.

If you want a complete migration to native mode, tools-
based migration is even more desirable. It has all of the
benefits mentioned above and had the additional benefit
that after the system has been ported to compatibility
mode it can be tested and enhanced in a “real world”
environment. Therefore, when the last enhancement
piece is finished, the system is ready for use a short time
later.

Renovate
If you are happy with the business logic components of
your application, but wish to breath some life into the
user interface and/or file I/O layer, then renovation is a
serious consideration. By extracting the business logic
from your application, and building into a new
framework of software components, a great deal of time
and cost can be saved.

One of the major benefits of application renovation is
that in many instances, the desired changes can be made,
tested and deployed on the original platform to eke some
extra life out of the current environment prior to
replacement, or they can be performed as a follow-on
step from a re-hosting project.

The main areas where renovation can be applied to an
application are:

· Convert non-relational (flat/indexed files) to relational
database access

· Replace a terminal/character-based user interface with
either a graphical (GUI) and/or web based user
interface – this generally implies a change from server-
only processing to multi-tier client/server processing

Each area of renovation has its own special requirements,
requiring different skills, and carries its own risks.

If changing the user interface, be sure to take into
consideration the changes required to your deployment
infrastructure. If you are currently using dumb terminals
connected via serial lines, a change to PC clients that
require broadband connections, and a greater level of user
support, can often cost more than the application
migration.

M I G R A T I O N

M i g r a t i n g A p p l i c a t i o n s F r o m P r o p r i e t a r y / L e g a c y P l a t f o r m s 1 7

Rewrite
You’ve looked around and can’t find anything in the
marketplace that even remotely meets your needs; your
current application just doesn’t cut it anymore, what do
you do? Think about writing a new application.

Creating a new application from scratch requires
meticulous planning, strong organizational skills and a
sound technology direction. Be prepared for a project
that is going to be behind schedule and over budget.
One of the biggest barriers when rewriting an application
is understanding what the current one actually does. If
the application has not been meticulously documented,
then the first task in the rewrite is to document the
business functionality of the existing application(s). If the
new application doesn’t do what the current one does as a
minimum, then it will not be acceptable to the user
community, and represents a risk to your business.

Modern rapid application development (RAD) tools that
make use of the latest technologies (such as Java, XML
etc.) can provide a major boost in getting a new
application deployed quickly. Typically, many
organizations that are maintaining applications developed
many years ago (or by others), are unlikely to have the
resources with the appropriate skills in-house to develop a
new application with functionality that equals or betters
the existing one.

You should not embark on a development project until
you fully understand all of the risks and challenges
involved – only then can you be sure that it will be
successful. The obvious benefits of rewriting are that
your applications are no longer constrained by the
original operating platform, and the you can take the
opportunity to fully integrate new levels of functionality
that would otherwise have been impossible without
major development efforts.

M I G R A T I O N

M i g r a t i n g A p p l i c a t i o n s F r o m P r o p r i e t a r y / L e g a c y P l a t f o r m s 1 8

Retire
Will there still be a need for the application that you are
currently running over the next 3-5 years? If not, then
why not spend the time you have now looking at what
you are going to replace it with, instead of figuring out
how to migrate it in the short term. There may be
another application available on the new platform right
now that can take over the functionality that this
application provides, allowing you to retire the current
application and deploy the new platform sooner rather
than later.

Retain
If you think that your application is solid and the
platform that you are running on is not currently causing
you any problems, the immediate thought is to just leave
everything “as is” – the old adage “if it ain’t broke, don’t
fix it” still applies.

In some instances this may be the most appropriate
decision for your organization; BUT, if you are using an
operating system and/or hardware platform for which the
vendor has set an end-of-life date, prolonging a decision
may put your organization at risk.

M I G R A T I O N

M i g r a t i n g A p p l i c a t i o n s F r o m P r o p r i e t a r y / L e g a c y P l a t f o r m s 1 9

Summary

As has been discussed, migrating your existing
applications to another platform is not a given. Before
you can migrate, you have to plan, which provides you
some insight into the schedule, costs and risks associated
with migration – ultimately it is these factors that will
influence your decision.

Your needs will be unique, and so comparing your
chosen path with that of others is inappropriate; it may
be that for various reasons you need to move off of your
original platform and onto another, with no loss of
function or performance, as quickly and as affordably as
possible; others may have chosen a different path, don’t
be swayed by them, they are not responsible (nor
accountable) for the success or otherwise of your
business!

If you are unsure as to which approach is best for you, by
at least making the necessary preparations now, you can
delay an immediate decision and reevaluate your options
at a later date.

Migration is the solution to organizations looking for a
low-risk introduction to a new platform, with a
quantifiable ROI. It is the type of project which on the
surface is very straightforward, but when ones looks
“under the hood” is actually quite complex. However, if
care is taken, with proper planning, migration projects
can be delivered on time, within budget, and will meet
user and management expectations. If used appropriately
by IT management, migration of key applications can
lead to a rejuvenated IT organization making better use
of limited financial resources.

Sector7 USA, Inc.
6500 River Place Boulevard
Building II, Suite 201
Austin, Texas 78730
United States of America
Tel +1 (512) 340-0606

+1 (800) VMS-UNIX-NT
Fax +1 (512) 340-9777
Email sales@sector7.com

Sector7 (U.K.) Ltd.
Canberra House
CorbyGate Business Park
Corby, Northants NN17 5JG
United Kingdom
Tel +44 (0)1536 408588
Fax +44 (0)1536 408518
Email euro.sales@sector7.com

© Copyright 2003 Sector7

www.sector7.com

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any electronic,
mechanical, photocopying, recording, or
otherwise without the prior written consent of
Sector7.

Trademarks
All trademarks not explicitly described here but
used within these pages are implicitly
acknowledged.

